
ESDTR-86-131

Technical Report
769

A Comparison of Hamming and Hopfield
Neural Nets for Pattern Classification

R.P. Lippmann
B. Gold

M.L. Malpass

21 Mav 1987

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON. MASSACHUSETTS

Prepared for the Department of the Air Force
under Electronic Systems Division Contract F19628-85-C-0002.

Approved for public release; distribution unlimited.

AM \W&

The work reported in this document was performed at Lincoln Laboratory, a
center for research operated by Massachusetts Institute of Technology, with the
support of the Department of the Air Force under Contract FI9628-85-C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The views and conclusions contained in this document are those of the contractor
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the United States Government.

The ESD Public Affairs Office has reviewed this report,
and it is releasable to the National Technical Information
Service, where it will be available to the general public,
including foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

^nLj) jxfct
Thomas J. Alpert, Major, USAF
Chief, ESD Lincoln Laboratory Project Office

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

A COMPARISON OF HAMMING AND HOPFIELD
NEURAL NETS FOR PATTERN CLASSIFICATION

R.P. LI PPM ANN
B. GOLD

M.L. M ALP ASS

Group 24

TECHNICAL REPORT 769

21 MAY 1987

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS

ABSTRACT

The Hopfield model neural net has attracted much recent attention. One use of the
Hopfield net is as a highly parallel content-addressable memory, where retrieval is
possible although the input is corrupted by noise. For binary input patterns, an
alternate approach is to compute Hamming distances between the input pattern and
each of the stored patterns and retrieve that stored pattern with minimum Hamming
distance. We first show that this is an optimum processor when the noise is
statistically independent from bit to bit. We then present a Hamming Neural Net
which is a highly parallel implementation of this algorithm that uses computational
elements similar to those used in a Hopfield net. We also compare the Hopfield and
Hamming nets for several applications. For the cases considered, the Hamming net
generally outperforms the Hopfield net. Also, the Hamming net requires fewer
interconnects than the fully connected Hopfield net.

in

TABLE OF CONTENTS

Abstract iii
List of Illustrations vii
List of Tables ix

1. Introduction 1

2. Optimum Processor for Classification of Binary Patterns 3

3. Neural Net Implementation of Optimum Processor 7

4. The Hopfield Classifier 21

5. Comparisons between Hopfield Classifiers and the Hamming Net 27

6. Conclusions 35

References 37

LIST OF ILLUSTRATIONS

Figure
No. Page

1 Generation of Corrupted Bit Pattern by Passing the Exemplar for
Pattern Class j through a Noisy Discrete Memoryless Channel. 3

2 Block Diagram of Optimum Maximum Likelihood Classifier. 4

3 Feed-Forward Perceptron Neural Net Used to Calculate Values
Related to the Likelihood of Each of M Pattern Classes for Patterns
with N Elements. All Nodes Are Analog-Threshold Logic Nodes with
Internal Thresholds Set to Zero. Weights Depend on the Stored
States. 8

4 Feed-Forward Neural Net That Determines Which of Eight Inputs Is
Maximum by Explicity Performing All Binary Comparisons. Nodes
Denoted by Filled Circles Are Hard-Limit Nodes and Nodes Denoted
by Open Circles Are Analog-Threshold Logic Nodes. Internal
Thresholds on All Nodes except the Output Nodes Are Zero.
Internal Thresholds on Nodes Z0,Z[...,z6,Z7 Are -6.5, -5.5,...,-0.5,+0.5,
Respectively. Weights Are Either +1 (Open Arrows) Or -1 (Filled
Arrows). 10

5 Comparator Subnet That Selects the Maximum of Two Inputs.
Internal Thresholds on both Hard-Limit Nodes (Filled Circles) and
Analog-Threshold Logic Nodes (Open Circles) Are Zero. 11

6 Feed-Forward Neural Net That Determines Which of Eight Inputs Is
Maximum Using a Binary Tree and Comparator Subnets from
Figure 5. Internal Thresholds on Both Hard-Limit Nodes (Filled
Circles) and Analog-Threshold Logic Nodes (Open Circles) Are Zero
Except for the Output Nodes. Internal Thresholds on Nodes
z0,Z|...,z6,z7 Are -2.5. Weights For All Comparator Subnets in This
Net Are As in Figure 5. All Other Weights Are +1. 11

7 Iterative Neural Net Denoted "Maxnet" That Determines Which of
M Inputs Is the Maximum. The Inputs Are Applied Prior to Time
Zero and Then Removed, and the Outputs Are Valid after the
Network Converges. All Nodes Are Analog-Threshold Logic Nodes
with Internal Thresholds Equal to Zero. Each Node Connects to
Itself and All Other Nodes. Weights Are -w (Solid Arrows) Or +1
(Open Arrows). 12

vn

Figure
No. Page

8 Node Outputs in a 10-Node Maxnet at Iterations Zero through 3
When the Net Converged. Initial Values Come from the Perceptron
Net Presented in Figure 3 When the Number of Classes (M) Is 10,
the Number of Input Nodes (N) Is 100, and the Input to the
Perceptron Net Is the Exemplar Pattern for Class Number 5. 14

9 Node Outputs in a 100-Node Maxnet at Iterations Zero through 9
When the Net Converged. Initial Values Come from the Perceptron
Net Presented in Figure 3 When the Number of Classes (M) Is 100,
the Number of Input Nodes (N) Is 1000, and the Input to the
Classifier Is the Exemplar Pattern for Class Number 50. 16

10 Node Outputs in the 100-Node Maxnet of Figure 9 When the Input
to the Classifier Is the Exemplar Pattern for Class Number 50 after
Being Passed through a Memoryless Binary-Symmetric Channel with
an Error Probability, p, of 0.4. 17

11 Average Number of Iterations until Convergence for the Maxnet of
Figure 7. Initial Values Come from the Perceptron Net Presented in
Figure 3 When the Number of Classes (M) Ranges from 2 to 10,
the Number of Input Nodes (N) Is 10M, and the Input Is the
Exemplar for One Pattern after Being Passed through a Binary-
Symmetric Channel with the Specified Probability of Error. 18

12 Complete Optimum Neural-Net Classifier Referred to as a Hamming
Net Made Up of a Perceptron to Calculate Likelihoods, and a
Maxnet to Select the Node with the Maximum Likelihood. 19

13 Iterative Hopfield Neural Net. The Inputs Are Applied Prior to Time
Zero and Then Removed, and the Outputs Are Valid after the
Network Converges. Nodes Denoted by Filled Circles Are Symmetric
Hard-Limit Nodes, and Nodes Denoted by Open Circles Are Analog-
Threshold Logic Nodes. Internal Thresholds in All Nodes Are Set to
Zero. Each Node in the Middle Row Connects to All Other Nodes
but Not to Itself. Weights Are Specified by tjj (Solid Arrows) or Are
+ 1 (Open Arrows). 22

14 Complete Hopfield Neural-Net Classifier Made Up from a Hopfield
Net Followed by a Perceptron. The Hopfield Net Is as in Figure 13.
The Perceptron Is Designed as in Figure 3 except All Nodes Are
Hard-Limit Nodes and the Internal Thresholds in the Final Output
Nodes Are Set to €-N Instead of Zero, Where e<l. 24

viu

Figure
No. Page

15 Digit Patterns Used in Experiment No. 1. 27

16 Results of Experiment No. 1 Obtained Using Digit Patterns (a) and
Random Patterns (b) and a Hopfield Net without Orthogonalization. 29

17 Hopfield Net (a) and Hopfield-Hamming Net (b) Performance with
and without Orthogonalization Using Digit Patterns from Experiment
No. 1. 32

18 Hopfield Net (a) and Hopfield-Hamming Net (b) Performance with
Orthogonalization Using 16 Hexadecimal Digits and Using 8 Digit
Patterns as Exemplars. 33

LIST OF TABLES
Table
No. Page

I Comparison of Three Neural Nets That Pick the Maximum of M
Inputs. (Node Counts Do Not Include Input or Output Nodes.) 19

II Comparison of Three Different Neural Nets That Can Be Used to
Classify M Binary Patterns When Each Pattern Has N Elements.
(Counts of Numbers of Nodes and Interconnects Do Not Include
Input and Output Nodes or Interconnects Between Major Internal
Subnets.) 25

III Hamming Distances between Digit Patterns Used in Experiment
No. 1. 28

IV Hamming Distances between Random Patterns Used in Experiment
No. 2. 28

V Exemplar Bibliography Patterns Used in Experiment No. 3. 30

IX

A COMPARISON OF HAMMING AND HOPFIELD NEURAL
NETS FOR PATTERN CLASSIFICATION

1. INTRODUCTION
There has been a recent upsurge of interest in neural net models made of highly parallel

computational elements connected in a pattern that is reminiscent of biological neural nets. In
particular, much recent work has explored the ability of a neural model described by Hopfield'' 3

to serve as a content-addressable memory and as a pattern classifier for binary bit patterns. A
content-addressable memory retrieves one of M stored patterns given an input pattern which is a
noisy version of a stored pattern. A classifier determines which of M exemplar patterns is most
similar to a noisy input pattern. In the following we focus on the classification problem because
a content-addressable memory is essentially a classifier which outputs the exemplar for the
selected class instead of an index to the class. We also focus on the classification problem
because classification is a fundamental operation that is essential to the important problems of
speech and image recognition whether achieved by biological or artificial means.

Past studies have demonstrated that the Hopfield model can be used as a content-
addressable memory for random input patterns'- 3 and to classify binary patterns created from
radar cross sections4, from consonants and vowels extracted from spoken words5, and from lines
in an image6. These results demonstrate that a neural net based on the Hopfield model can
perform classification. In addition, Hopfield models have been successfully applied to other
problems, such as the travelling salesman problem, the A-D converter problem, and the signal
decomposition problem7- 8.

We have been interested in a specific set of pattern classification problems in speech and
image processing. In some special cases, such problems can be formulated in maximum-likelihood
terms and optimum processors can be derived. In particular, if each element in a binary pattern
is perturbed independently by noise, the optimum processor is an algorithm that measures
Hamming distances between the perturbed input pattern and each of the stored patterns, and
selects the minimum.

In this report, we derive this optimum-processor result and then show how a neural net
model called the Hamming net can be constructed to perform this algorithm. We then compare
implementations and performance of the Hopfield and Hamming nets using simulations of a
visual digit recognition task and a bibliography retrieval task.

2. OPTIMUM PROCESSOR FOR CLASSIFICATION OF
BINARY PATTERNS

An optimum binary classifier must classify each binary input vector x into one of M classes
such that the probability of a classification error is minimized. Here, the input vector x has N
elements which can be in one of two states denoted the +1 and the -1 states. Each of the M
classes is represented by an exemplar binary vector xJ where j = 0,1,2,...,M-1 is the index to the
class.

The classifier can be easily analyzed if each input vector to be classified is obtained by pass-
ing each component of an exemplar through a discrete, noisy, memoryless channel, as shown in
Figure 1; i.e., the noise is independent from bit to bit. In Figure 1 the value of an element in the
+ 1 and -1 state is taken to be +1 and -1, respectively. In some further formulations these values
will be +1 and 0 instead.

I
+1. -1. +1..

INPUT

DISCRETE
MEMORYLESS

CHANNEL

X = -1. +1. -1. -1..

CORRUPTED OUTPUT
FED TO CLASSIFIER

Figure I. Generation of corrupted bit pattern by passing the exemplar for pattern class j through a noisy discrete memory-
less channel.

The channel in Figure 1 is defined by four conditional probabilities:

€ P(-l|+l)

P(+i|+D
P(+l|-l)
PHl-D

p
l (I)

where

0.0 ^ e < 0.5 and 0.0 ^ p < 0.5 . (2)

Each probability in Equation (1) is the conditional probability of observing a specific bit at the
output of the channel given a specific bit at the input.

The binary classification problem created by a discrete memoryless channel is identical to the
classical communication theory problem of building a decoder to determine which of M block
codes of length N was sent over a noisy discrete memoryless channel. In our terminology, how-
ever, the block codes are the exemplars. If the a priori probabilities of presenting exemplars from

different classes at the input to the noisy channel are equal, then the minimum error decoder is a
maximum likelihood decoder9 that selects the class j* for which

P(x| xj*) ^ P(x| xj); all j * j* (3)

In this equation, P(x| xJ) is the likelihood for class j or the conditional probability of observing
the vector x at the output of the noisy channel, given that exemplar xJ was presented at the
input. A block diagram of an optimum maximum likelihood classifier is presented in Figure 2. In
this figure the input vector x is presented at the left, likelihood values are calculated in parallel,
and then the class with the maximum likelihood value is selected. Likelihood values are denoted
yj, where yj = p(x| xJ). The output is a vector z whose elements are zero except for that element
corresponding to the class j* that satisfies Equation (3).

N-2

N-1

INPUT

X

CALCULATE
LIKELIHOODS

'M-2

'Ml

INTERMEDIATE
LIKELIHOOD

VALUES

PICK
MAXIMUM

'M-2

M-1

OUTPUT

Z

(Only One Element Positive)

CM

P

Figure 2. Block diagram of optimum maximum likelihood classifier.

The exact form of the maximum likelihood decoder depends on the probabilities that define
the noisy channel. In all cases, however, we will show that the likelihoods are monotonically
related to functions equal to weighted sums of elements from the input vector. For example, in
the simplest case a binary symmetric channel is used and p = €. In this case it is equally likely for
a +1 state to be changed to a -1 state and vice versa and

N.1
ham N-N:

P(x|x,) = e (i-e)
ham

(4a)

where N^ is the Hamming distance between x and xJ. This is the number of elements in the
input which are not identical to the corresponding element in the exemplar for class j. Equation
(4a) simplifies to

P(x|xJ)= —- (l-e)N (4b)

Since € is less than 0.5, the first fraction on the right is less than 1.0 and Equation (4b) is a
maximum for that stored state with the smallest Hamming distance to the input. A neural net
that implements an optimum classifier for the binary symmetric channel must thus calculate the
Hamming distance to exemplars for all classes and then select that class which produces a min-
imum. Instead of calculating the Hamming distance directly, we will calculate N minus the
Hamming distance and maximize this function.

N minus the Hamming distance can be calculated from a weighted sum of the elements of
the input vector. If the elements of the input vector take on the values +1 and -1 for the +1 and
-1 states, respectively, then

N-NLm = cj+ SVi • <5a>
i = 0

x'

In this equation,

Wjj = -T- , (5b)

and

N
Cj=y . (5c)

Here x^ is the value of element i of the exemplar for class j. When all elements in the input vec-
tor match an exemplar exactly, each element in the sum of Equation (5a) adds 1/2, and the total
is N. Whenever an element in the input vector doesn't match the corresponding element in the
exemplar, the prior total is decremented by 1 as required.

An alternative derivation was suggested in" where it is assumed that elements of the input
vector x take on the values 0 and +1 for the -1 and +1 states, respectively. In this case N minus
the Hamming distance can be calculated from:

N-l
N~Ni =C;+ V Wj-x- . (6a) ham J £* ij i v '

i = 0

In this equation,

1 + 1 if xJ = +l

"t "i-i»4-o • (6b)

N-l
Cj = Nz = N - X Xi (6C)

i = 0

Here NJ represents the number of elements in the exemplar for class j that are zero. When all
elements in the input vector match an exemplar exactly, the sum in (6a) adds up the number of
positive input elements. This, added to the number of zero input elements results in N as desired.
The sum is reduced by one whenever a zero input element that matches an exemplar becomes
positive, and whenever a positive input element that matches an exemplar becomes zero.

In the more general situation, the noisy channel is not symmetric and p ¥= e. In this case it is
more likely that the +1 state will change to the -1 state or vice versa, and it is not sufficient to
simply calculate the Hamming distance. For simplicity, we present results for the case when ele-
ments of the input vector x take on the values 0 and +1 for the -1 and +1 states, respectively.
We will also maximize log P(x| xJ), denoted L;, instead of P(x| xJ). In this case

Lj= £ xW—WN-NJ)log(e) + X Xilog/-M+NJlog(l-p) (7a)

Vxj=i vxJ = o
1 1

This can be written as a weighted sum of elements of the input vector as was done in Equa-
tion (5a) and Equation (6a):

N-l
Lj = cj+ £wijXi (7b)

i = 0

log(^-)ifxj = +l
(7c)

log^ifx^O

Cj = (N - NJ
z) log (€) + NJ

z log (I - p), (7d)

with NJ is as in (6c). When p - €, (7a) reduces to a form similar to Equation (6a).

3. NEURAL NET IMPLEMENTATION OF OPTIMUM PROCESSOR

In the previous section it was demonstrated that the optimum processor always forms weigh-
ted sums of the elements of the input vector and picks the maximum from these sums. In this
section we demonstrate that this processor can be implemented using an artificial neural net. The
question of what algorithms can be implemented using neural nets is of interest because of the
potential usefulness of such nets.

An artificial neural net is a highly parallel network with many interconnections between
analog computational elements or nodes. The simplest node forms the sum of N weighted inputs
presented on N input links and passes the result through a nonlinearity out on one output link.
Neural nets almost always include an inherent nonlinearity and require primarily local connectiv-
ity between nodes. In addition, the weights on the input links can be adapted based on informa-
tion concerning the correctness of the output. Artificial neural nets are of interest primarily
because they may be able to emulate the speed and performance of real biological neural nets
using many simple slow computational elements operating in parallel. They thus offer one possi-
ble solution to the problem of obtaining the massive parallelism and computational requirements
that are presumed to be required for such problems as speech recognition.

Two neural nets are logically required to implement an optimum classifier for binary pat-
terns. One net forms the weighted sums to calculate quantities related to the likelihood of the dif-
ferent classes and the second picks the maximum.

A net that forms weighted sums is presented in Figure 3. The topology of this net is similar
to that of a perceptron12. An input pattern x is applied at the bottom of this net and an output
pattern y is produced at the top. The first layer of nodes sends values of the input pattern to the
links feeding the second layer. The second layer of nodes uses nonlinear threshold logic ele-
ments10 to sum weighted values of the inputs and add internal offsets. Output values from the
second layer are

N-l

yj = f(cj+ 2 wijxi)> (8a)

i = 0

where

!a if a > 0 •M (8b)
0 if a ^ 0

In these equations, f(a) is a nonlinear function that models the nonlinearity inherent in a biologi-
cal neuront, Cj is an internal offset associated with each threshold logic node, and WJ: are positive
or negative weights associated with the links. The internal offsets and weights are selected differ-
ently for the three different situations described in the previous section. A binary symmetric

t Biological neurons saturate for large enough a. In this discussion we are interested in the
monotonically increasing portion of the input-output characteristic.

Yl vM-2 VM-1

*o X1 I
Figure 3. Feed-forward percepiron neural net used to calculate values related to the likelihood of each of M pattern
classes for patterns with N elements. All nodes are analog-threshold logic nodes with internal thresholds set to zero.
Weights depend on the stored states.

channel with p = € requires the weights and offset in Equation (5) if elements of the input vector
take on the values +l and -I, and the weights and offsets in Equation (6) if elements take on the
values 0 and I. In the more general case when p#t, and the inputs take on the values 0 and l,
the weights and offsets are as in Equation (7). The resultant output values Vj are N - Nj^ for
the binary symmetric channel, and L: for the general case.

A number of different nets can be used to pick the maximum value from the yj outputs of
the perceptron net. In situations where it is only important to know when the input matches a
stored state very closely, it is sufficient to identify those second-level nodes in Figure 3 with out-
put values that exceed a specified threshold. This can be performed by modifying the constant
added in (8a) such that only the output of those nodes corresponding to closely matching stored
states are positive. For example, for the binary symmetric channel with +l and -l inputs, if C: in

N
(8a) is changed to A - — then only nodes corresponding to exemplars with a Hamming distance

less than A from the input will have positive outputs.

In the more general situation, a net must select the maximum over the M y: values. We have
developed three topologically different neural net structures which perform this task. These nets
maintain the highly parallel structure necessary to achieve the theoretical computation speed-up
provided by multiple processors. They could thus be used in a larger system when their outputs
feed other nets without compromising the overall computational speed of the system. One feed-
forward net uses a brute force approach to perform binary comparisons between all input values.
A second feed-forward net uses a binary tree to reduce the number of nodes required. Finally, a
third fully-connected net sometimes called a "winner-take-all" net uses strong inhibition between
nodes and iterates until the maximum is found.

A brute force feed-forward net that picks the maximum from eight inputs is presented in
Figure 4. The inputs labelled y0 through y7 are on the bottom of the net, and the outputs
labelled z0 through z7 are along the left diagonal. This network is designed such that only the
output corresponding to the maximum input will be positive. The filled circles in this net repre-
sent hard-limit nodes that compare the values of all inputs. Hard limit nodes are similar to
threshold logic nodes (Equations 8a and 8b) except the function f is defined by

(1 if a > 0

I 0 if a ^ 0.

These nodes are simpler to implement than threshold-logic nodes because linearity above thresh-
old is not required.

The outputs, z:, in Figure 4 are

Zj = f[2%j-yi)- X f(yi-yj) + j-(M-i.5)j , (9b)
i>j KJ

where f is as in Equation (9a) and 0 ^ i , j < M.

Hard limit nodes in Figure 4 perform binary comparisons required in Equation (9b) between
all inputs. Internal thresholds in the output nodes and weights are set such that an output node
is positive only when the results of all binary comparisons with the associated input indicate that
that input is greatest. A limitation of this net is that it becomes very large for large M because it
requires 0(M2) nodes to pick the maximum of M inputs. For example, 5050 nodes are required
to pick the maximum of 100 inputs.

A neural net that is more efficient for large numbers of inputs can be built using the two-
input comparator subnet presented in Figure 5. This subnet produces logical outputs (z0, z() indi-
cating which input was maximum and also one analog output (max) equal to the maximum
value. Whenever the inputs (y0 and y]) differ, only the logical output corresponding to the max-
imum input will be nonzero, and the value of max will be that of the maximum input. The com-
parator subnet uses threshold logic nodes represented by open circles in Figure 5, and hard-limit
nodes represented by filled circles. In addition, all internal offsets (C: in Equation (8a)) in Figure
5 are zero.

A network that picks the maximum of M inputs can be built using comparator subnets
arranged in a layered binary tree. Such a net includes M-l comparator subnets arranged in roughly
log2M layers when the maximum of M inputs must be selected. For example, it requires only 594
nodes to pick the maximum from 100 inputs. An example of such a net that picks the maximum
of eight inputs is presented in Figure 6. The inputs in this net are at the bottom, and the outputs
are at the top. Four comparator subnets in the first layer, two comparator subnets in the second
layer, and one partial subnet in the third layer from the bottom of this net are used to find the
maximum input. The maximum value is fed forward from the input through the threshold-logic
nodes (open circles) to the final partial subnet. The decisions concerning which input was maxi-
mum are fed forward from the input through the hard-limit nodes (filled circles) to the output

z3 f:ti:±

to

K

Figure 4. Feed-forward neural net that determines which of eight inputs is maximum by explicitly performing all binary
comparisons. Nodes denoted by filled circles are hard-limit nodes and nodes denoted by open circles are analog-threshold
logic nodes. Internal thresholds on all nodes except the output nodes are zero. Internal thresholds on nodes z0, z. z6,z7

are -6.5. -5.5 -0.5.+0.5, respectively. Weights are either +/ (open arrows) or -I (filled arrows).

10

1 H il 1

I
I 1

Figure 5. Comparator subnet that selects the maximum of two inputs. Internal thresholds on both hard-limit nodes (filled
circles) and analog-threshold logic nodes (open circles) are zero.

I V0 V1 V3 Y4 V5

INPUT

Figure 6. Feed-forward neural net that determines which of eight inputs is maximum using a binary tree and compara-
tor subnets from Figure 5. Internal thresholds on both hard-limit nodes (filled circles) and analog-threshold logic nodes
(open circles) are zero except for the output nodes. Internal thresholds on nodes z0, z, z6,z7 are -2.5. Weights for all
comparator subnets in this net are as in Figure 5. All other weights are +/.

II

nodes. After the input propagates to the output, only that output corresponding to the maximum
input will be high.

The above two nets use strictly feed-forward connections and are relatively large. A less
complex net that uses feedback connections and will be referred to as a maxnet, is presented in
Figure 7. This net is motivated by the large numbers of connections in biological neural nets and
by laterally interconnected networks described by Kohonen12. Although this net is similar in
structure to the Hopfield net1, it uses threshold-logic nodes instead of hard-limit nodes and feeds
the output of each node back to its input instead of disallowing this feedback path. The maxnet
is a fully connected net made up of only M threshold logic nodes with internal thresholds set to
zero. Input values are applied at time zero through the input nodes on the bottom of Figure 7.
This initializes node outputs for each node at time zero (MJ(0)) to the input values:

Mj(0) = yj,j = 0,l,...M-2,M-l (10a)

v0

OUTPUT

o o
*1

'M-2 'M-1

o o
VM-2 VM-1

Figure 7. Iterative neural net denoted "maxnet" that determines which of M inputs is the maximum. The inputs are
applied prior to time zero and then removed, and the outputs are valid after the network converges. All nodes are analog-
threshold logic nodes with internal thresholds equal to zero. Each node connects to itself and all other nodes. Weights are
-w (solid arrows) or +1 (open arrows).

The network then iterates to find the maximum via the following equation:

Mj(t+I) = f fMj(t) - X WijMi(t)] (10b)

i*j

In this equation f is the threshold logic function described in Equation (8b) and Wjj is the inhibi-
tory weight between nodes. Each node inhibits all other nodes with a value equal to the node's
output multiplied by a small negative weight. Each node also feeds back to itself with unity gain.

12

After convergence, only that output node corresponding to the maximum input will have a non-
zero value. This value will, in general, be less than the original, time zero, value of that node.
The output values of the net are thus simply the node output values after convergence:

Zj = Mj(oo),j = 0,l,...M-2,M-l. (10c)

The maxnet net will converge and find the maximum input when

wij = w<^T , (lOd)

where, by convergence we mean the node outputs stop changing and only the output of one node
corresponding to the maximum input is positive.

The proof of convergence depends primarily on the fact that the inhibition to the node con-
taining the maximum value is always less than the inhibition to other nodes, and that at conver-
gence the inhibition to the node with the maximum value reduces to zero. Denote the total inhi-
bition in Equation (10b) from all other nodes to node j as inhib: where:

inhibj(t) = J] WjjMi(t) . (11)

If node j* corresponds to the maximum input, then on the first iteration inhib:*(l) will be less
than the inhibition to all other nodes. This follows because all node outputs are positive and the
sum of all outputs, excluding one in Equation (11), will be minimum when the maximum is
excluded. Node j* will thus remain the maximum after the first iteration. By induction, it will
remain the maximum over all iterations.

The remainder of the proof of convergence depends on demonstrating that the output of
node j* is never driven to zero but the outputs of all other nodes are. When Equation (lOd)
is satisfied, inhibit) is always less than the average value of all other node outputs. The inhibi-
tion to node j* will thus be less than the average of the output of all nodes. Whenever a maxi-
mum exists, this inhibition will always be less than the current output of node j* because the
maximum of a set of positive numbers is always greater than the average. The output of node j*
will thus not be driven to zero while any other nodes have non-zero outputs. After all other
node outputs are driven to zero, the inhibition to node j* drops to zero, and the output of j*
remains constant. The outputs of all other nodes will always be driven to zero because the
inhibition to these nodes remains positive on all iterations and approaches a positive constant as
time increases. In practice, the maxnet will still converge and find the maximum when each

weight wy is set to plus a small random component. This forces the net to find a maximum

when the inputs to all nodes are identical.

The behavior of the maxnet is illustrated in Figure 8. This figure presents the node outputs
for a 10-node maxnet at iterations 0 through 3 when the net converged. The initial values to the
net come from the perceptron likelihood calculation net presented in Figure 3 when the number

13

4 6
NODE NUMBER

4 6
NODE NUMBER

10

oo

I!

Figure 8. Node outputs in a 10-node maxnet at iterations zero through 3 when the net converged. Initial values come
from the perceptron net presented in Figure 3 when the number of classes (M) is 10. the number of input nodes (N) is 100.
and the input to the perceptron net is the exemplar pattern for class number 5.

14

of classes (M) is 10, the number of input nodes (N) is 100, and the input to the classifier is the
exemplar pattern for class number 5. Exemplars were selected by randomly setting each element
in every exemplar to +1 or -1 with equal probability. The output values from the maxnet nodes
range from zero to 100 which is the number of input nodes in the classifier. At time zero, node 5
has a value of 100 because the input pattern exactly matches the exemplar for class 5. All other

N
nodes have values from a binomial distribution with a mean of — = 50 and a standard deviation

2
of \f.25N = 5. This occurs because the Hamming distance has a binomial distribution when
exemplars are selected at random as described above. After the first iteration, output values are
reduced by the average of all nodes at time zero and the outputs of six nodes remain positive.
Output values are then reduced further on the second iteration where only three outputs remain
positive. Finally, only the maximum output remains positive after the third iteration.

A similar example is presented in Figure 9 for a maxnet with 100 instead of 10 nodes where
the number of input nodes to the perceptron likelihood calculation net is 1000. As can be seen,
the number of iterations required for convergence increases only slightly from 3 to 9. This
increase is primarily caused by the greater number of nodes with values at the high end of the
binomial distribution when there are 100 nodes.

Convergence is slower when the peak value across nodes in the maxnet is less distinct. This
is illustrated in Figure 10. This figure is similar to Figure 9 except the input to the perceptron
net was passed through a noisy binary symmetric channel where the probability of changing a bit
(p) was set to 0.4. The initial value of node 50 is roughly 600 because only roughly 20% of the
bits in the input match the examplar for class 50. Other nodes still have a binomial distribution
with mean 500 and standard deviation of \/.25N = 15.8. As can be seen, the network converges
in 27 iterations. Similar experiments were performed when the number of classes (M) in the clas-
sifier ranged from 2 to 100, the number of elements in the patterns (N) was set to 10M, and the
probability of error in the binary symmetric channel (p) ranged from 0.0 to 0.5. Results are pre-
sented in Figure 11.

Figure 11 presents the average number of iterations until convergence for the maxnet of Fig-
ure 7 versus the probability of error in the binary symmetric channel for the above cases. It was
obtained from Monte Carlo experiments examining 100 different runs per point. As can be seen,
the average number of iterations required for convergence is small (<10) for as many as 100
classes when there is a well-defined peak and the probability of error is less than 0.1. The aver-
age number of iterations also does not grow strongly with the number of nodes in the maxnet.
The average number of iterations required for convergence rises gradually to be less than 20
when the probability of error is 0.3. Above this level, the average number of iterations rises to a
value that is roughly 10% above M when the probability of error is 0.5. These results demon-
strate the utility and robustness of the maxnet. The net always converges and finds the node with
the maximum value, and the number of iterations required for convergence does not grow
rapidly as the number of classes increases. Furthermore, the number of iterations increases only
when the error rate of the classifier is large and the utility of the classifier itself is questionable.

15

3
Q.

D
O

1000

750

I

t = 0

I

500

250

0 I I I

1000

750 -

0-
I-

O 500
Ul
Q
O
z

250

I

t = 6

I

I
25 50 75

NODE NUMBER

100 0 25 50 75

NODE NUMBER

100

o>

Figure 9. Node outputs in a 100-node maxnet at iterations zero through 9 when the net converged. Initial values come
from the perceptron net presented in Figure 3 when the number of classes (M) is 100. the number of input nodes (N) is
1000, and the input to the classifier is the exemplar pattern for class number 50.

16

a.
K

O
iu
Q
O
Z

i

ooo 1
f= 18

I 1

750 —

500 — —

250

I 1 - 1

—

—

1
t = 27

1 1

—

1 i 1
25 50 75

NODE NUMBER

100 25 50 75

NODE NUMBER

100

Figure 10. Node outputs in the 100-node maxnet of Figure 9 when the input to the classifier is the exemplar pattern for
class number 50 after being passed through a memoryless binary-symmetric channel with an error probability, p, of 0.4.

17

w
z
o
t-
<
cc

a.
UJ
CO

5
D
Z

AVERAGE NUMBER OF ITERATIONS TO CONVERGENCE

110| 1

100
A 2 CLASSES

s 5 CLASSES

T 10 CLASSES

O 20 CZ^SSfS

y 50 CMSS£S

• 700 CLASSES

0.1 0.2 0.3

PROBABILITY OF ERROR

0.4 0.5 i
Figure II. Average number of iterations until convergence for the maxnet of Figure 7. Initial values come from the
perceptron net presented in Figure 3 when the number of classes (M) ranges from 2 to 100. the number of input nodes (N)
is 10M, and the input is the exemplar for one pattern after being passed through a binary-symmetric channel with the
specified probability of error.

A comparison of the three different types of nets described above for picking the maximum
is presented in Table I. This table illustrates that the maxnet in Figure 7 requires the fewest
nodes to pick the maximum value. The brute force feed-forward net in Figure 4 becomes intract-
able for large numbers of inputs because the number of nodes in this net grows 0(N2). The
binary tree net in Figure 6 is more reasonable; however, it still requires roughly six times the
number of nodes used in the maxnet. The maxnet should thus be preferred whenever the decid-
ing factor is the number of nodes required and the slight delay added by the need to iterate is
acceptable. For large numbers of inputs, (M > 10) the number of interconnects required is
always greatest for the brute force net and the maxnet and least for the binary tree. The binary
tree may thus be preferred when the deciding factor is the number of interconnects. In the fol-
lowing, we use the maxnet.

18

TABLE 1

Comparison of Three Neural Nets That Pick The Maximum of M Inputs
(Node Counts Do Not Include Input Or Output Nodes)

Net Structure
Types of

Nodes
Required

Number of Nodes Required

M = 10 M = 100 M = 1000

Brute Force Feed-Forward Hard-Limit 55 5,050 500,500

Binary Tree Feed-Forward Hard-Limit
and

Threshold-Logic

54 594 5,994

Maxnet Fully-Connected,
Iterate to
Convergence

Threshold-Logic 10 100 1,000

A block diagram of a complete neural net classifier made up of a perceptron likelihood cal-
culator and a maxnet is presented in Figure 12. This complete classifier will be referred to as a
Hamming net. The Hamming net is an efficient optimum classifier made up of only threshold-
logic nodes and interconnects. It is operated by presenting a binary pattern at the input for at
least the time it takes the input to propagate to the maxnet nodes, by removing the input, and
then by waiting until the maxnet converges. After convergence, only the output node correspond-
ing to the selected class will be positive.

OUTPUT
M-1

MAXNET
U PICKS
/ . MAXIMUM

PERCEPTRON
CALCULATES
LIKELIHOODS

*N-2 XN-1
INPUT

Figure 12. Complete optimum neural-net classifier referred to as a Hamming net made up of a perceptron to calculate
likelihoods, and a maxnet to select the node with the maximum likelihood.

19

4. THE HOPFIELD CLASSIFIER

A highly connected neural net was described by Hopfield in References 1 to 3 that can be
used as an associative memory. The net described in1 that uses hard-limit nodes is presented in
Figure 13. Input values are applied at time zero to these nodes through the bottom threshold-
logic nodes. This initializes node outputs for each node at time zero (MJ(0)) to the input values

Mj(0) = Xj, i = 0,l,...N-2,N-l (12a)

The network then iterates using the following equation:

Mj(t+i)=n % tjjMid)) . d2b)

In this equation f is a modified hard-limit function and tj: is weight applied to the output of
node i that feeds to node j. If we assume the elements of the input vector x take on values +1
and -I, respectively, for the +1 and -1 states, then f is the symmetric hard-limit function

(1 if a > 0
f(«) = S . ., ^n . (12c) 1 if a SS 0

and the weights are specified by

Ml
tij= £ x*x? , i*j , (13a)

s = 0

and

tij = 0, i=j , (13b)

where x1 is element i of the exemplar for pattern j. The output of each node is fed to every other
node with a weight that is symmetric, and each node does not feedback to itself. After conver-
gence, the output of the net is the final pattern represented by the outputs of the nodes

x; = Mi(=c), i = 0,l,...N-2,N-l . (14)

Hopfield1 first demonstrated that when this net is trained with M exemplar patterns using
Equation (13), and an exemplar is presented at time zero, then the final pattern in the net after
convergence will be one of the exemplars with high probability if

M< .15N . (15)

The exemplars thus form stable states of the net. Hopfield's statistical results were obtained with
randomly generated exemplars. It is possible and relatively easy to select a set of M exemplars
that satisfy Equation (15) but do not form stable states in the Hopfield net. These exemplars
must have many elements in common. When an exemplar for one of these patterns is presented
at time zero, the network doesn't converge to any of the trained exemplars. Instead it converges

21

OUTPUT
lN-2 lN-1

*N-2 lN-1

INPUT

Figure 13. Iterative Hopfield neural net. The inputs are applied prior to time zero and then removed, and the outputs are
valid after the network converges. Nodes denoted by filled circles are symmetric hard-limit nodes. Internal thresholds in all
nodes are set to zero. Each node in the middle row connects to all other nodes but not to itself. Weights are specified by t .
(solid arrows) or are +/ (open arrows).

to a spurious pattern never seen before. This problem of spurious states also occurs when a noisy
exemplar is presented to the net. Even when the M exemplars are stable states of the net, there is
no guarantee that noisy versions of these exemplars passed through discrete memoryless channels
and presented at time zero will converge to the original exemplar. Hopfield1, for example,
observed that the number of spurious states found increases substantially as more and more ele-
ments in the input exemplar are corrupted.

The Hopfield neural net can be used as a classifier only when: (1) the exemplars for the
patterns to be classified form stable states and converge to themselves when presented at time
zero as input, and (2) a mechanism is provided to determine which of the M exemplars the net is
closest to after convergence. The first requirement is a necessary condition for proper operation.
The second is necessary because the Hopfield net by itself is not a neural-net classifier. It is more
like a preprocessor which still requires a classification net to select which of M exemplars a patt-
ern is closest to.

It is difficult to satisfy the requirement that exemplars form stable states without actually
running the Hopfield net. In general, patterns that are more random will satisfy this requirement
more easily than patterns with many bits in common. We have satisfied this requirement by
selecting patterns carefully using trial and error procedures, by using randomly generated patterns
where the Hamming distances between all patterns were within certain bounds, and by using an
orthogonalization technique described in6.

22

The orthogonalization technique involves generating patterns b that are orthogonal to the
exemplars xs unless k = s. The weights in the net are then given by

Ml

ty= Jxfbj , i*j , (16a)
s = 0

and

ty = 0, i = j . (16b)

Equation (16) then replaces Equation (13) as the recipe for determining weights, and the
operation of the net is otherwise the same as without orthogonalization. The b patterns are
found from

B = XC-' (17a)

In this equation B is an N by M array where each row is the orthogonal pattern b1, X is an N
by M array where each row is the exemplar x1, and C is an M by M correlation matrix for the
exemplars:

cu

N-l

X 4 4 (17b>
k = 0

The inverse in Equation (17a) will exist provided the xs exemplars are linearly independent.
When the exemplars are not linearly dependent, the more general Moore-Penrose matrix inver-
sion technique13 can be used.

The second requirement for using the Hopfield net as a classifier can be satisfied in two
ways. First, if a "no-match" output is allowed for spurious states, the final pattern in the net
need only be compared to each of the exemplars. In this case, a perfect match results in an out-
put, otherwise the ouput indicates a "no-match" condition. A net that performs this type of class-
ification is presented in Figure 14. Comparisons between the final state of the Hopfield net and
exemplars are performed using a perceptron with M nodes. The weights in the perceptron from
internal node x- to node z. are simply the elements from exemplar j:

w^x] (18)

Internal offsets in the output nodes are set to e-N where 6 < 1. The output of output node j will
thus be non-zero only when the final pattern in the Hopfield net exactly matches the exemplar
for pattern j.

Another technique for using the Hopfield net in a classifier eliminates the possibility of a
"no-match" output. Here, the Hamming distance between the final pattern in the net and exem-
plars for all patterns is computed and the pattern with the minimum Hamming distance is
selected. This can be performed with the Hamming net classifier presented in Figure 12 when the
input to the Hamming net is the final state or output of the Hopfield net. A classifier that uses

23

OUTPUT

PERCEPTRON

HOPFIELD
NET

N-2 ~IM-1

INPUT IS

Figure 14. Complete Hopfield neural-net classifier made up from a Hopfield net followed by a perceptron. The Hopfield
net is as in Figure 13. The perceptron is designed as in Figure 3 except all nodes are hard-limit nodes and the internal
thresholds in the final output nodes are set to 6-yV instead of zero, where €</.

24

this technique will be called a Hopfield-Hamming classifier. The Hopfield-Hamming classifier
uses the Hopfield net as a preprocessor for the Hamming net. Since the Hamming net is optimal,
the Hopfield-Hamming net is generally suboptimal and always requires more nodes than the
Hamming net.

Table II compares the two classifiers that use the binary Hopfield net to the optimal Ham-
ming net classifier. As can be seen, the two classifiers that use Hopfield nets require more nodes
and many more interconnects than the optimal Hamming net for the normal situation when the
number of classes is less than the number of elements in each input pattern. For the examples in
the table, classifiers using the Hopfield net require almost an order-of-magnitude more intercon-
nects than the Hamming net and more nodes than the Hamming net. This is because the Hop-
field net requires 0(N2) interconnects while the Hamming net requires only 0(M2) interconnects
and in the examples N = 10M. In general, classifiers using the Hopfield net always require nearly
an order of magnitude more interconnects than the Hamming net because Hopfield1 requires
M <.15N. When orthogonalization is used as in6 and N = M, the simpler Hopfield classifier is
roughly equivalent in complexity to the Hamming net while the more complex Hopfield-
Hamming net requires more nodes and almost twice as many interconnects as the Hamming net.
The more complex Hopfield-Hamming net is probably to be preferred over the simpler Hopfield
classifier, however, because it does not allow a "no-match" output to occur when the Hopfield
net converges to a spurious state.

TABLE II

Comparison of Three Different Neural Nets That Can Be Used To Classify M
Binary Patterns When Each Pattern Has N Elements

(Counts Of Numbers Of Nodes And Interconnects Do Not Include Input And Output
Nodes Or Interconnects Between Major Internal Subnets)

Net Description Nodes Interconnects
Nodes/Interconnects

M=10, N=100

Hopfield Hopfield Net
Followed By
Perceptron

2N+M N2+N(M-1) 210/10,900

Hopfield-
Hamming

Hopfield Net
Followed By
Hamming Net

2N+2M N2+M2+N(M-1) 220/11,000

Hamming Perceptron
Followed By
Maxnet

N+2M M2+NM 120/1,100

25

5. COMPARISONS BETWEEN HOPFIELD CLASSIFIERS
AND THE HAMMING NET

Two experiments were performed using 8 patterns with 120 elements each, to compare the
behavior of a Hamming net classifier, a Hopfield-Hamming classifier, and a Hopfield classifier.
The first experiment used the set of visually recognizable handcrafted digit patterns shown in
Figure 15. These patterns represent seven digits plus one block pattern selected because it had a
large Hamming distance to the others. The second experiment, used random patterns where each
element was +1 or -1 with a probability of 0.5. In this experiment a pattern was used if, and
only if, its Hamming distance from the already accepted exemplars fell in the range 55 to 65.
Tables III and IV list the Hamming distances for the 8 exemplars (sO through s7) used in the
two experiments. All exemplar patterns were stable; i.e., any exemplar given as the input to a
network did not change as a result of iterating. In both experiments each of the 8 exemplars was
randomly perturbed 40 times at a specified error rate using a binary symmetric channel and ap-
plied as the input to each of the three classifiers. This provided 320 runs per data point.

The results of the first experiment using digit patterns are presented in Figure 16a. Percent
correct in this and other figures was computed by counting a trial as correct only when the cor-
rect input pattern was selected. It can be seen that the Hopfield net fails immediately at an error
rate of .025 and that the Hopfield-Hamming net begins to fail at the error rate of .150, whereas

ID

o o
o o

. o

o o o
0 0 0

o
o
o
0
o
0 0 0

0 0 0 0 0
0 0 0 0.

o o

o o
o o
o o
o o
o o
o o 0 0 0 0

00000000
o o
o o
o o
o o
o o

o o
o o
o o
o o
o
o
o
o
o o
o o
o o
o o

o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
O 0
o o

o o o o o
o o o o o

o o o o o o
o o o o o o
0 0....
o o
o o
o o o o o o

o o .
o o o
o o

o
o o

o o o o o o
o o o o o o
o o

o o
o o
o o
o o
o o
o
o
o o o o

o o
o o
00000000
oooooooo

o
o
o
o
0
o

o o o o o o
o o o o o o
 o
 o

. o
o

o o o o
. . . o o
 0 0
 o o
0 0 0 0 0 0 0
o o o o o o .

ooo oooo
OOO 00
OOO 00.
OOO 00.
000 OOO

000 oooooo

oooooo oooo
0 0. . o o
0 0. . o o

o o
oo oooo

o o
o o

. o o
o o

ooo
o o
o o
o o
o o
o o

00 oooooo

Figure 15. Digit patterns used in Experiment No. I.

27

rABLE III

Hamming Distances Between Digit Patterns Used In Experiment No. 1

sO

sO s1 s2 s3 s4 s5 s6 s7

0 48 64 58 48 74 58 74

s1 48 0 54 50 78 54 54 54

s2 64 54 0 36 56 30 60 66

s3 58 50 36 0 36 60 62 36

s4 48 78 56 36 0 66 48 52

s5 74 54 30 60 66 0 42 84

s6 58 54 60 62 48 42 0 72

s7 74 54 66 36 52 84 72 0

TABLE IV

Hamming Distances Between Random Patterns Used In Experiment No. 2

sO

sO s1 s2 s3 s4 s5 s6 s7

0 62 59 61 57 59 64 63

s1 62 0 65 57 63 61 64 59

s2 59 65 0 62 58 58 55 58

s3 61 57 62 0 60 58 57 58

s4 57 63 58 60 0 56 65 56

s5 59 61 58 58 56 0 65 62

s6 64 64 55 57 65 65 0 61

s7 63 59 58 58 56 62 61 0

28

z
LU

<
Q.

SE
o *-
Q
z
< c

I o
00

o
to

o

Z
oc
LU

<
0.

I

CO

Q

o

O Uj o
S £ S
5 ?: 5 S o li
to i to

II II II

• • <

** 5
O 6

1
LU 55

d <
EC

oc ~>
O €
BC

(N DC F
O

LU

s.
5

•8 e
a

o

o

c

5 5,
S
•5 o

t c
o 2

-5
0

CO LU fc.
o t- c

<
DC

u
EC g.

<N

O
EC
EC

3§
o LU N

3 C

$ s?

— >o o
o

£ *

133HH03 ±N33H3d

29

the Hamming net is always correct until an error rate of .300. The results of the second experi-
ment using random patterns are presented in Figure 16b. Here, the Hamming net begins failing
at an error rate of about .300 as before, but the Hopfield-Hamming net survives until an error
rate of .250 as opposed to .150, and the Hopfield net fails at .250 instead of .025, a marked
improvement. Clearly, the Hopfield net is sensitive to a "well-behaved" set of Hamming distances
among the stored states. In general, the straight Hamming net yields the best overall results.

Hopfield1 suggested that the Hopfield net could be used as a bibliographic retrieval system.
A third experiment was performed to test this conjecture. A network of 11 exemplars, each with
168 elements, was created from a bibliography based on the references in Hopfield's paper1. Two
16-character fields were used for the name (including two initials) and the publication, and a 2-
character field was used for the date. The 16-character fields consisted of the letters "a" through
"z" and the character "_" t0 mark the end of the character string if shorter than 16 characters.
The 2-character field contained the last two digits of a 20th century date (0 through 9). Charac-
ters were represented by 5-bit bytes and digits by 4-bit bytes using ASCII-like representations.
This resulted in a total of 168 bits. In order to maintain desirable Hamming distances, it was
necessary to "pad out" a field with "unique" data when it was bigger than its entry. A simple
reflection of the entry was performed to meet this requirement. The format is shown in Table V,
which contains the 11 exemplars which were selected from a list of 27 references. References were
selected only if they satisfied a range of Hamming distances. This range was initially set to a

TABLE V

Exemplar Bibliography Patterns Used In Experiment No. 3

jclonguethiggensprocroysoclondon68

g willwacher rehbiolocybernetics76

vbmountcastle elthemindfulbrain 78

jaanderson nosrepsychologyreview77

wbkristan natsirinformationproce80

bwknight thgink Iectmathlifescie75

idharmon nomrah neuraltheorymode64

wsmcculloch hcolbulletinmathbiop43

m minsky yksnim perceptrons snor69

dohebb_bbeh_hebborganizationbeha49

psgoldman namdlobrainresearch hc77

30

minimum and had to be relaxed until 11 references were found to meet the criterion. The result-
ing Hamming distances covered the range from 71 through 93, a reasonable variation from the
expected distance of 84 which random patterns would have produced. In all but one case, the
entire information was exactly retrievable from the input of either the name with initials, the
name without initials, or the publication. It was observed that a straight Hamming net would
have sufficed.

Orthogonalization, described in the previous section, has two positive effects on a Hopfield
net: (1) it improves the performance of an already stable network, and (2) it allows the number
of exemplars to be increased without losing stability as long as M ^ N. Experiment No. 1 was
repeated after orthogonalizing the net. This experiment involved the handcrafted digit patterns
with a less than ideal set of Hamming distances. A dramatic improvement in the performance of
the Hopfield net may be seen in Figure 17a. The Hopfield-Hamming net also improved in perfor-
mance, as shown in Figure 17b.

Following the initial orthogonalization experiments we increased the number of exemplars to
16, dropping the square pattern and including all the hexadecimal digits (0 through F). These 16
exemplars remained stable. Performance statistics were gathered for error rates of .100 through
.300; and, as we expected, the Hopfield and Hopfield-Hamming nets suffered a degradation in
performance as illustrated in Figure 18a and Figure 18b, respectively.

The bibliography retrieval Hopfield net was also orthogonalized and expanded to include all
27 entries from Hopfield's paper. Hamming distances covered the range from 51 through 100,
excluding three smaller distances due to the fact that three references had the same publication
entry. All entries were retrievable from only the last name and initials. All entries but one were
retrievable from only the last name. Four entries were not retrievable by publication alone, three
of which shared the same publication and one of which differed from another publication by
only three characters.

31

I-
LU
Z

z

<
i

•
Q
_i
—
LL
0.
O
I

loaauoo iN3ou3d

LLI

z

LU

LL
Q.
o
X

.be
M
so e

(•) LU 3
o 1- e < 0

cc S
CC

,N

O
tr a

CM CC
O LU

C
0

3
0

-c

i- i
o

o

"9
§

"2 c
a
E
1

in ^
O

5
5

o 1

1
m LU "*3 -;

O K c
< a o 5^
cc 5 5
O c 1 cc 5 |

CN tr v_ %>

o LU «, g.

I*
_ & £
O 3 Si

«5 8.

I

103HHOO lN33H3d
15
I!

32

CM

8

a
.5

*

a
0

a

I
.»

a C

a
5 5,

"a .§>

it
-< g

i .3

133HHOO J.N33d3d

33

6. CONCLUSIONS

Two neural network approaches have been compared as they apply to several pattern classi-
fication problems. First, it was shown that for patterns consisting of statistically independent
binary components, an optimum classifier can be configured as a single-layer perceptron followed
by a densely-connected neuron-like net that labels the most likely stored patterns. We called this
classifier a Hamming net and showed several methods of implementing this algorithm. We also
compared implementation complexity of the Hamming net and a Hopfield net and concluded
that the Hamming net was, in principle, a simpler device than a fully-connected Hopfield net.
This was followed by a brief review of the Hopfield model and the discussion of several tech-
niques for enhancing performance of this model. Finally, we presented experimental comparisons
for three types of input data. For these data, it was seen that the storage prescription of1 yielded
poorer performance than did the Hamming net. By carefully choosing the stored states and by
orthogonalization, Hopfield net performance became comparable to but never better than Ham-
ming net performance for the examples chosen. Further research is needed to compare such sys-
tems when the neural components are analog rather than digital. Further research should also
examine the performance of neural classification nets with analog, continuously variable, inputs.

35

REFERENCES

1. J.J. Hopfield, "Neural Networks and Physical Systems with Emergent Collec-
tive Computational Abilities," Proc. National Acad. Sci. USA, Vol. 79,
pp. 2554-2558 (April 1982).

2. J.J. Hopfield, D.I. Feinstein, and R.G. Palmer, " 'Unlearning' has a Stabiliz-
ing Effect in Collective Memories," Nature, Vol. 304, pp. 158-159 (July 1983).

3. J.J. Hopfield, "Neurons with Graded Response Have Collective Computa-
tional Abilities," Proc. National Acad. Sci. USA, Vol. 81, pp. 3088-3092
(May 1984).

4. N. Farhat, S. Miyahara, and K.S. Lee, "Two-Dimensional Optical Implemen-
tation of Neural Networks and Their Application in Recognition of Radar
Targets," in Proc. of the Neural Networks for Computing Conf., Snowbird,
UT (April 1986).

5. B. Gold, "Hopfield Model Applied to Vowel and Consonant Discrimination,"
in Proc. of the Neural Networks for Computing Conf., Snowbird, UT (April
1986).

6. P.M. Grant and J.P. Sage, "A Comparison of Neural Network and Matched
Filter Processing for Detecting Lines in Images," in Proc. of the Neural Net-
works for Computing Conf., Snowbird, UT (April 1986).

7. J.J. Hopfield and D.W. Tank, "Computing with Neural Circuits: A Model,"
Science, Vol. 233, pp. 625-633 (August 1986).

8. D.W. Tank and J.J. Hopfield, "Simple "Neural" Optimization Networks: An
A/D Converter, Signal Decision Circuit, and a Linear Programming Circuit,"
IEEE Trans, on Circuits and Systems, Vol. CAS-33, pp. 533-541 (May 1986).

9. R.G. Gallager, Information Theory and Reliable Communication, John Wiley
and Sons, New York (1968).

10. T. Martin, Acoustic Recognition of a Limited Vocabulary in Continuous
Speech, Ph.D. Thesis, Dept. of Electrical Engineering, University of Pennsyl-
vania (1970).

11. M. Minsky and S. Papert, Perceptrons, An Introduction to Computational
Geometry, MIT Press, Cambridge, MA (1986).

12. F. Rosenblatt, Principles of Neurodynamics, Spartan Books, New York
(1959).

13. T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag, NY
(1984).

37

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION

Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

Technical Report 769

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-86-131

6a. NAME OF PERFORMING ORGANIZATION

Lincoln Laboratory, MIT

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

Electronic Systems Division

6c. ADDRESS (City, State, and Zip Code)

P.O. Box 73
Lexington, MA 02173-0073

7b. ADDRESS (City, State, and Zip Code)

Hanscom AFB, MA 01731

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

Air Force Systems Command

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-85-C-0002

8c. ADDRESS (City, State, and Zip Code)

Andrews AFB
Washington, DC 20334

10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NOS.

63735F,
33401G

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

A Comparison of Hamming and Hopfield Neural Nets for Pattern Classification

12. PERSONAL AUTHOR(S)
R.P. Lippmann, B. Cold, M.L. Malpass

13a. TYPE OF REPORT
Technical Report

13b. TIME COVERED
FROM TO .

14. DATE OF REPORT (Year, Month, Day)
21 May 1987

15. PAGE COUNT
50

16. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Associative Memory Hamming Net Neuromorphic Pattern Matching
Binary Classifier Hopfield Parallel Processing Perceptron
Classification Neural Pattern Classification
Connectionist Neural Net

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The Hopfield model neural net has attracted much recent attention. One use of the Hopfield net is as a highly
parallel content-addressable memory, where retrieval is possible although the input is corrupted by noise. For binary
input patterns, an alternate approach is to compute Hamming distances between the input pattern and each of the
stored patterns and retrieve that stored pattern with mininum Hamming distance. We first show that this is an
optimum processor when the noise is statistically independent from bit to bit. We then present a Hamming Neural
Net which is a highly parallel implementation of this algorithm that uses computational elements similar to those
used in a Hopfield net. We also compare the Hopfield and Hamming nets for several applications. For the cases
considered, the Hamming net generally outperforms the Hopfield net. Also, the Hamming net requires fewer
interconnects than the fully connected Hopfield net.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
• UNCLASSIFIED/UNLIMITED D SAME AS RPT. D DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL
Maj. Thomas J. Alpert, USAF

22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted
All other editions are obsolete.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

